Integrating Inertial Sensors with GPS for Vehicle Dynamics Control

نویسندگان

  • Jihan Ryu
  • Christian Gerdes
چکیده

ABSTRACT This paper demonstrates a method of estimating several key vehicle states – sideslip angle, longitudinal velocity, roll and grade – by combining automotive grade inertial sensors with a Global Positioning System (GPS) receiver. Kinematic Kalman filters that are independent of uncertain vehicle parameters integrate the inertial sensors with GPS to provide high update estimates of the vehicle states and the sensor biases. Using a twoantenna GPS system, the effects of pitch and roll on the measurements can be quantified and are demonstrated to be quite significant in sideslip angle estimation. Employing the same GPS system as an input to the estimator, this paper develops a method that compensates for roll and pitch effects to improve the accuracy of the vehicle state and sensor bias estimates. In addition, calibration procedures for the sensitivity and crosscoupling of inertial sensors are provided to further reduce measurement error. The resulting state estimates compare well to the results from calibrated models and Kalman filter predictions and are clean enough to use in vehicle dynamics control systems without additional filtering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation

The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...

متن کامل

State and Parameter Estimation for Vehicle Dynamics Control Using Gps

Many types of vehicle control systems can conceivably be developed to help drivers maintain stability, avoid roll-over, and customize handling characteristics. A lack of state and parameter information, however, presents a major obstacle. This dissertation presents state and parameter estimation methods using the Global Positioning System (GPS) for vehicle dynamics control. It begins by explain...

متن کامل

Performance Enhancement of GPS/INS Integrated Navigation System Using Wavelet Based De-noising method

Accuracy of inertial navigation system (INS) is limited by inertial sensors imperfections. Before using inertial sensors signals in the data fusion algorithm, noise removal method should be performed, in which, wavelet decomposition method is used. In this method the raw data is decomposed into high and low frequency data sets. In this study, wavelet multi-level resolution analysis (WMRA) techn...

متن کامل

Low-cost Image-assisted Inertial Navigation System for a Micro Air Vehicle

The increasing civilian demand for autonomous aerial vehicle platforms in both hobby and professional markets has resulted in an abundance of inexpensive inertial navigation systems and hardware. Many of these systems lack full autonomy, relying on the pilot’s guidance with the assistance of inertial sensors for guidance. Autonomous systems depend heavily on the use of a global positioning sate...

متن کامل

A Hierarchical SLAM/GPS/INS Sensor Fusion with WLFP for Flying Robo-SAR's Navigation

In this paper, we present the results of a hierarchical SLAM/GPS/INS/WLFP sensor fusion to be used in navigation system devices. Due to low quality of the inertial sensors, even a short-term GPS failure can lower the integrated navigation performance significantly. In addition, in GPS denied environments, most navigation systems need a separate assisting resource, in order to increase the avail...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004